3.46 \(\int \frac{a+b x^2}{(c+d x^2)^{3/2} (e+f x^2)^{3/2}} \, dx\)

Optimal. Leaf size=272 \[ \frac{\sqrt{e} \sqrt{c+d x^2} (-2 a d f+b c f+b d e) \text{EllipticF}\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right ),1-\frac{d e}{c f}\right )}{c \sqrt{f} \sqrt{e+f x^2} (d e-c f)^2 \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac{x (b c-a d)}{c \sqrt{c+d x^2} \sqrt{e+f x^2} (d e-c f)}-\frac{\sqrt{f} \sqrt{c+d x^2} (-a c f-a d e+2 b c e) E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{c \sqrt{e} \sqrt{e+f x^2} (d e-c f)^2 \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}} \]

[Out]

-(((b*c - a*d)*x)/(c*(d*e - c*f)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])) - (Sqrt[f]*(2*b*c*e - a*d*e - a*c*f)*Sqrt[c
 + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(c*Sqrt[e]*(d*e - c*f)^2*Sqrt[(e*(c + d*x^2
))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) + (Sqrt[e]*(b*d*e + b*c*f - 2*a*d*f)*Sqrt[c + d*x^2]*EllipticF[ArcTan[(Sq
rt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(c*Sqrt[f]*(d*e - c*f)^2*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f
*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.220669, antiderivative size = 272, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {527, 525, 418, 411} \[ -\frac{x (b c-a d)}{c \sqrt{c+d x^2} \sqrt{e+f x^2} (d e-c f)}+\frac{\sqrt{e} \sqrt{c+d x^2} (-2 a d f+b c f+b d e) F\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{c \sqrt{f} \sqrt{e+f x^2} (d e-c f)^2 \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac{\sqrt{f} \sqrt{c+d x^2} (-a c f-a d e+2 b c e) E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{c \sqrt{e} \sqrt{e+f x^2} (d e-c f)^2 \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)/((c + d*x^2)^(3/2)*(e + f*x^2)^(3/2)),x]

[Out]

-(((b*c - a*d)*x)/(c*(d*e - c*f)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])) - (Sqrt[f]*(2*b*c*e - a*d*e - a*c*f)*Sqrt[c
 + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(c*Sqrt[e]*(d*e - c*f)^2*Sqrt[(e*(c + d*x^2
))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) + (Sqrt[e]*(b*d*e + b*c*f - 2*a*d*f)*Sqrt[c + d*x^2]*EllipticF[ArcTan[(Sq
rt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(c*Sqrt[f]*(d*e - c*f)^2*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f
*x^2])

Rule 527

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*n*(b*c - a*d)*(p + 1)), x] + Dist[1/(a*n*(b*c - a*d
)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)
*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 525

Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)^(3/2)), x_Symbol] :> Dist[(b*e - a*
f)/(b*c - a*d), Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[Sqrt[a + b
*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[b/a] && PosQ[d/c]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{a+b x^2}{\left (c+d x^2\right )^{3/2} \left (e+f x^2\right )^{3/2}} \, dx &=-\frac{(b c-a d) x}{c (d e-c f) \sqrt{c+d x^2} \sqrt{e+f x^2}}-\frac{\int \frac{-c (b e-a f)+(b c-a d) f x^2}{\sqrt{c+d x^2} \left (e+f x^2\right )^{3/2}} \, dx}{c (d e-c f)}\\ &=-\frac{(b c-a d) x}{c (d e-c f) \sqrt{c+d x^2} \sqrt{e+f x^2}}-\frac{(f (2 b c e-a d e-a c f)) \int \frac{\sqrt{c+d x^2}}{\left (e+f x^2\right )^{3/2}} \, dx}{c (d e-c f)^2}+\frac{(b d e+b c f-2 a d f) \int \frac{1}{\sqrt{c+d x^2} \sqrt{e+f x^2}} \, dx}{(d e-c f)^2}\\ &=-\frac{(b c-a d) x}{c (d e-c f) \sqrt{c+d x^2} \sqrt{e+f x^2}}-\frac{\sqrt{f} (2 b c e-a d e-a c f) \sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{c \sqrt{e} (d e-c f)^2 \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}+\frac{\sqrt{e} (b d e+b c f-2 a d f) \sqrt{c+d x^2} F\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{c \sqrt{f} (d e-c f)^2 \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}\\ \end{align*}

Mathematica [C]  time = 0.71995, size = 262, normalized size = 0.96 \[ \frac{\sqrt{\frac{d}{c}} \left (-i e \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} (b c-a d) (c f-d e) \text{EllipticF}\left (i \sinh ^{-1}\left (x \sqrt{\frac{d}{c}}\right ),\frac{c f}{d e}\right )+x \sqrt{\frac{d}{c}} \left (a \left (c^2 f^2+c d f^2 x^2+d^2 e \left (e+f x^2\right )\right )-b c e \left (c f+d \left (e+2 f x^2\right )\right )\right )-i d e \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} (2 b c e-a (c f+d e)) E\left (i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )\right )}{d e \sqrt{c+d x^2} \sqrt{e+f x^2} (d e-c f)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)/((c + d*x^2)^(3/2)*(e + f*x^2)^(3/2)),x]

[Out]

(Sqrt[d/c]*(Sqrt[d/c]*x*(a*(c^2*f^2 + c*d*f^2*x^2 + d^2*e*(e + f*x^2)) - b*c*e*(c*f + d*(e + 2*f*x^2))) - I*d*
e*(2*b*c*e - a*(d*e + c*f))*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticE[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d
*e)] - I*(b*c - a*d)*e*(-(d*e) + c*f)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticF[I*ArcSinh[Sqrt[d/c]*x]
, (c*f)/(d*e)]))/(d*e*(d*e - c*f)^2*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.029, size = 581, normalized size = 2.1 \begin{align*}{\frac{1}{ce \left ( cf-de \right ) ^{2} \left ( df{x}^{4}+cf{x}^{2}+de{x}^{2}+ce \right ) } \left ({x}^{3}acd{f}^{2}\sqrt{-{\frac{d}{c}}}+{x}^{3}a{d}^{2}ef\sqrt{-{\frac{d}{c}}}-2\,{x}^{3}bcdef\sqrt{-{\frac{d}{c}}}-{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) acdef\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) a{d}^{2}{e}^{2}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) b{c}^{2}ef\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) bcd{e}^{2}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) acdef\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) a{d}^{2}{e}^{2}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+2\,{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) bcd{e}^{2}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+xa{c}^{2}{f}^{2}\sqrt{-{\frac{d}{c}}}+xa{d}^{2}{e}^{2}\sqrt{-{\frac{d}{c}}}-xb{c}^{2}ef\sqrt{-{\frac{d}{c}}}-xbcd{e}^{2}\sqrt{-{\frac{d}{c}}} \right ) \sqrt{f{x}^{2}+e}\sqrt{d{x}^{2}+c}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)/(d*x^2+c)^(3/2)/(f*x^2+e)^(3/2),x)

[Out]

(x^3*a*c*d*f^2*(-d/c)^(1/2)+x^3*a*d^2*e*f*(-d/c)^(1/2)-2*x^3*b*c*d*e*f*(-d/c)^(1/2)-EllipticF(x*(-d/c)^(1/2),(
c*f/d/e)^(1/2))*a*c*d*e*f*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)+EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*
d^2*e^2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)+EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*b*c^2*e*f*((d*x^2+c)
/c)^(1/2)*((f*x^2+e)/e)^(1/2)-EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*b*c*d*e^2*((d*x^2+c)/c)^(1/2)*((f*x^2+
e)/e)^(1/2)-EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*c*d*e*f*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-Ellipt
icE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*d^2*e^2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)+2*EllipticE(x*(-d/c)^(1/
2),(c*f/d/e)^(1/2))*b*c*d*e^2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)+x*a*c^2*f^2*(-d/c)^(1/2)+x*a*d^2*e^2*(-d
/c)^(1/2)-x*b*c^2*e*f*(-d/c)^(1/2)-x*b*c*d*e^2*(-d/c)^(1/2))*(f*x^2+e)^(1/2)*(d*x^2+c)^(1/2)/c/e/(-d/c)^(1/2)/
(c*f-d*e)^2/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b x^{2} + a}{{\left (d x^{2} + c\right )}^{\frac{3}{2}}{\left (f x^{2} + e\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/(d*x^2+c)^(3/2)/(f*x^2+e)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)/((d*x^2 + c)^(3/2)*(f*x^2 + e)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x^{2} + a\right )} \sqrt{d x^{2} + c} \sqrt{f x^{2} + e}}{d^{2} f^{2} x^{8} + 2 \,{\left (d^{2} e f + c d f^{2}\right )} x^{6} +{\left (d^{2} e^{2} + 4 \, c d e f + c^{2} f^{2}\right )} x^{4} + c^{2} e^{2} + 2 \,{\left (c d e^{2} + c^{2} e f\right )} x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/(d*x^2+c)^(3/2)/(f*x^2+e)^(3/2),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(f*x^2 + e)/(d^2*f^2*x^8 + 2*(d^2*e*f + c*d*f^2)*x^6 + (d^2*e^2 + 4*c
*d*e*f + c^2*f^2)*x^4 + c^2*e^2 + 2*(c*d*e^2 + c^2*e*f)*x^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)/(d*x**2+c)**(3/2)/(f*x**2+e)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b x^{2} + a}{{\left (d x^{2} + c\right )}^{\frac{3}{2}}{\left (f x^{2} + e\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/(d*x^2+c)^(3/2)/(f*x^2+e)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)/((d*x^2 + c)^(3/2)*(f*x^2 + e)^(3/2)), x)